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Introduction 
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Biomathematics: 

The term “Biomathematics” which in general stands for the 

Mathematical Biosciences; has a deep root and its literature can be 

found in abundance in different journals with varying areas. Some 

other terms such as Theoretical Biology, Mathematical Biology or 

Mathematical Life Sciences are also in practice. But the term 

“Biomathematics” is the most appropriate term as it covers a wider 

area.  

This subject has been contributed by mathematicians, statisticians, 

physicists, zoologists, botanists, computer experts, physiologists, 

demographers, medical scientists and engineers etc.  

Various models in Biomathematics are studied. Some of them are 

mentioned below: 

i. Demographic Models 

ii. Genetic Models 

iii. Models in Epidemiology 

iv. Mathematical Models for Synovial Joints 

v. Mathematical Models in Pharmacokinetics 

vi. Optimization Models in Biological and Medical Sciences 

vii. Mathematical Models for Blood Flow 

In addition to the above mentioned models in biosciences, there are 

still many areas which need to be treated mathematically and our 

mathematical bioscientists are constantly trying to open up new 

areas of biosciences to have a better and deep understanding of 

various life forms. 
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Areas of Biomathematics: 

In the process of expanding the areas of Biomathematics, the 

researchers have not restricted themselves only to the existing 

mathematical techniques. Rather they are now using a number of 

new mathematical techniques developed during the last few 

decades, to understand the already studied areas of mathematical 

biosciences. In order to make a universally acceptable model in 

Biomathematics, we take both the results and processes of 

mathematical modelling. Biomathematics has a number of 

disciplines e.g. Bioengineering, Mathematical Physiology, 

Biophysics, Mathematical Zoology, Mathematical Botany, 

Demography, Mathematical Genetics and Mathematical 

Biomechanics. 

Bioengineering is concerned with the design of the appliances 

used in medical sciences like artificial limbs, heart – lung machines, 

dialysers etc.  

Mathematical Physiology is the study of the conduction of current 

in nervous system, brain models, exchange of oxygen and carbon 

dioxide in human system etc. 

Biophysics is the study of applications of physical concepts in 

biological systems using the mathematical approaches. 

Mathematical Zoology deals with the micro-organism and its role 

in fermentation technology, population growth, removal of unwanted 

elements, removal of pollutants, bioconversion of solar energy etc. 

Mathematical Botany is the study of problems regarding growth of 

cells, growth and shape of plants, nutrition intakes by plants, growth 

of forests etc. 
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Demography which is also popularly known as the Population 

Dynamics, deals with growth of population, population dispersal, 

effects of immigration and mixing of population, effect of age factor 

on the size of population etc. 

Mathematical Genetics is the study of transfer of genetic features 

from one generation to another one carried through the action of 

genes. 

Mathematical Biomechanics is categorized into two categories. In 

Biosolid Mechanics, stresses and strains in bones and muscles 

are studied while Biofluid Dynamics is the study of the flow of 

biofluids in living bodies. 

Classes of Fluids:  

The constitutive equations of the fluid are the functional relations 

between the six components of the stress tensor τ and the rate of 

strain tensor e which depend upon the fluid under consideration. 

Therefore the fluids are categorized in the following two classes 

given as: 

(i)  Newtonian Fluids: 

A fluid is called a Newtonian fluid when its viscosity remains 

unchanged with the rate of deformation e. 

The tangential stress tensor of such a viscous Newtonian fluid is 

given as  

τ = μe 
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(ii)  Non – Newtonian Fluids: 

 A fluid is called a non – Newtonian fluid when its viscosity changes 

with the rate of deformation i.e. the coefficient of viscosity becomes 

the function of strain tensor e. 

Various Non – Newtonian Fluid Models: 

Several models have been introduced for the non – Newtonian 

behavior of fluids. A few of them with their constitutive equations 

are mentioned below: 

(i) Bingham Plastic: 

 τ = μe + τ� for τ ≥ τ� 

 e = 0  for τ ≤ τ�  

(ii) Ellis Fluid: 

 e = Aτ + Bτ� for τ ≥ τ� 

(iii) Herschel – Bulkley Fluid: 

 τ = μe� + τ� for τ ≥ τ� 

 e = 0  for τ ≤ τ�  

(iv) Power – Law Fluid: 

 τ = μe� for τ ≥ τ� 

 e = 0  for τ ≤ τ�  

where 

 n < 1 gives pseudo – plastic power – law fluid. 

 n > 1 gives dilatant power – law fluid. 
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 n = 1 gives Newtonian viscous fluid. 

(v) Prandtl Fluids: 

 τ = A sin��(e/c) 

 where τ� represents the yield stress. 

 (J.N. Kapur, 1985) 

Casson Fluid: 

Casson fluid is a non – Newtonian fluid which can be defined as a 

shear thinning fluid. It is assumed that the fluid has a zero viscosity 

at an infinite shear rate and an infinite viscosity at zero shear rate 

(N. Casson, 1959; R.K. Dash, 1996). Also the Casson fluid has a 

yield stress below which there is no flow with the following 

constitutive equations: 

τ�/� = μ�/�e�/� + τ�
�/�

 for τ ≥ τ� 

e = 0   for τ ≤ τ� 

where τ� is the yield stress.  

After a number of experiments performed on blood with varying 

blood parameters (G.W.S. Blair, 1959; S.E. Charm et al., 1965; 

E.W. Merill et al., 1965), it can be concluded that the blood flowing 

through small vessels (D.A. McDonald, 1974) behaves like a 

Casson fluid (N. Casson, 1959; Y.C. Fung, 1981) at a low rate of 

shear. 

Composition and Functions of Blood:  

Blood is composed of a suspension of cells like red blood cells 

(RBCs) or erythrocytes, white blood cells (WBCs) or leucocytes and 

platelets or thrombocytes in an aqueous solution of pale yellow 
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colour known as plasma. This plasma has about 90% water by 

weight, 7% some dissolved proteins like albumin, globulin, 

fibrinogen etc., 1% inorganic substances and 1% other organic 

substances (Y.C. Fung, 1981).  

The red blood cells occupy about 50% of the total blood volume in 

an average man (Y.C. Fung, 1981). There are approximately 

5 × 10� cells in one milliliter of healthy human blood of which 95% 

parts are covered by red blood cells. The red cells have the shape 

of a biconcave disc. They transport the oxygen from the lungs to all 

the other cells of the body as well as remove the carbon dioxide 

originated by the metabolic processes in the body. They carry 

oxygen by binding it with hemoglobin. (J.N. Kapur, 1985). 

Hemoglobin is a form of iron oxides which is present at a unique 

high concentration in the mature red blood cells (E.E. Tzirtzilakis, 

2005) 

The average life span of a red cell is approximately 120 days and 

the total number of erythrocytes dying per second is around 

2.4 × 10�. The average volume of a red cell is 90 � cubic metre and 

its surface area is about 140 μ square meter (J.N. Kapur, 1985).  

 The white blood cells cover about one – sixth or 1% of the 

blood volume (J.N. Kapur, 1985). There are about 5000 to 8000 

white blood cells per mm3 (Y.C. Fung, 1981).  The white blood cells 

are classified in mainly two categories as granulocytes and 

agranulocytes. The granulocytes contain neutrophils, eosinophils, 

and basophils while agranulocytes contain monocytes and 

lymphocytes. The leukocytes help us to protect our body from the 

infections and remove the dead cells and tissue debris (L. 

Sherwood, 2010). 

 The platelets constitute about 5% of the total blood volume 

(J.N. Kapur, 1985). There are about 250,000 to 300,000 platelets 
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per mm3 (Y.C. Fung, 1981). The platelets are very small parts 

(2 to 4 μm in diameter) of bone marrow cells produced by shedding 

off the outer edges of extraordinarily large (up to 60 μm in diameter) 

bone marrow cells known as megakaryocytes. One megakaryocyte 

produces approximately 1000 platelets. An average life of a platelet 

is of about 10 days. Platelets help to stop bleeding by forming a 

temporary plug whenever there is a leakage in the blood vessel due 

to any reason. Platelets also dissolve the blood clots when they are 

not required any longer (L. Sherwood, 2010). 

Viscosity of Blood: 

The blood is neither homogeneous nor Newtonian but the plasma in 

the state of isolation can be regarded as a Newtonian fluid whose 

viscosity is approximately 1.2 times of that of water which keeps on 

increasing with growing age (J.N. Kapur, 1985, J.N. Mazumdar, 

1992).  

The effective viscosity of the whole blood depends upon the shear 

rate and mostly on the hematocrit which represents a percentage of 

red blood cells in the total blood volume. The hematocrit is around 

45% for men and 42% for women. According to the Fahraeus - 

Lindqvist effect (R. Fahraeus, 1929; R. Fahraeus and T. Lindqvist, 

1931; J.H. Barbee et al. 1971), the blood viscosity also depends 

upon the radii of the capillaries when their diameters are less than 

300 � metre (J.N. Kapur, 1985). The apparent viscosity decreases 

with decreasing blood vessel diameter (Y.C. Fung, 1981).  

Blood Flow Properties: 

The blood flow problems in the engineering situations have been 

observed more complex in comparison to the general fluid problems 

which are due to the following reasons: 
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(i) The unusual growth in the Reynold number. 

(ii) The uncommon changes in the curvatures of the blood 

arteries which give ways to the secondary flows for high 

Reynold numbers. 

(iii) Some unusual pulsatality in the blood flows because of the 

rhythmic actions of the heart. 

(iv) A large number of tree – like blood vessels originated from 

the bifurcations. 

(v) Some unexpected fluid properties arising from the different 

shapes of the cells and the distortions from passing through 

the arteries of the diameters less than their own (J.N. Kapur, 

1985). 

Some Other Biofluids: 

1. Peristaltic Fluid: 

 When a progressive wave of area expansion and contraction 

travels along the wall of a flexible tube, the fluid of the tube is 

known as the peristaltic fluid. The neuro – muscular properties of a 

tubular smooth muscle are responsible for the motion in the 

peristaltic fluid. It may be Newtonian or non – Newtonian. The fluid 

flow can occur in either one layer or two layers i.e. a core layer and 

a peripheral layer. (J.N. Kapur, 1985). 

2. Synovial Fluid: 

The synovial fluid is a shear – dependent viscous fluid which is filled 

in a synovial joint cavity which is a space between two mating 

globular bones with ends covered with a soft sponge like material 

known as articular cartilage (J.N. Kapur, 1985). The fluid has 

hyaluronic acid which is a polysaccharide combined with protein 
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(Y.C. Fung, 1981). It is a light yellow coloured clear dialyzate of 

blood plasma having a concentration of 3.5 mg/gm hyaluronic acid 

molecules with a molecular weight 500,000 and the molecular 

length of order 5 × 10�� − 10�� cm. The behaviour of the fluid is 

like that of a pseudo – plastic fluid (J.N. Kapur, 1985). The fluid is 

more viscous than blood due to the presence of hyaluronic acid 

(Y.C. Fung, 1981). Its effective viscosity keeps on varying between 

100 P at 10�� per sec and 10 cP at 100 per sec and depends upon 

the concentration of the molecules of the hyaluronic acid.  

 The main function of the synovial fluid is to lubricate the 

articulating joints so that the friction between the articular cartilage 

can be reduced while movement.  

 Generally the synovial fluid is better represented by a power 

– law fluid of constitutive equation τ = μe�  where μ = 4.5  dynes-

sec/cm2 and n = 0.37. 

 In a diseased synovial joint, the synovial fluid is no longer a 

non – Newtonian fluid as the articular cartilage becomes rough and 

cracked. (J.N. Kapur, 1985). 

Survey of literature 

So far various aspects of biofluids have been extensively studied by 

research workers. The arterial stenosis is a common problem which 

the whole globe is facing. In the arterial stenosis the walls get 

swelled due to some unwanted fatty and fibrous tissues in the 

lumen of the wall which ultimately narrows the blood vessels 

causing different cerebral and cardiovascular problems. Various 

flow features through the constricted arteries under different 

circumstances and parameters have been studied so far.  

J.R. Womersley (1955) studied the method for the calculation of 

velocity, rate of flow and viscous drag in arteries when the pressure 
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gradient is known and found a phase lag between the motion of the 

liquid and the pressure gradient which causes it. R.H. Haynes et al. 

(1959) discussed the role of the non-Newtonian behaviour of blood 

and concluded that the flow features of blood in perfused vascular 

beds are linear in the physiological working range due to which the 

distensibility of the vessels decides the shape of the pressure – flow  

curves. G.W.S. Blair (1959) gave an equation for the blood flow, 

plasma and serum through narrow glass tubes and observed that 

the larger suspended particles of blood passing through the tubes 

accumulate in the center making a plasma region near the walls. 

E.W. Merrill et al. (1963) studied the non – Newtonian rheology of 

human blood and found that the yield stress in the human blood 

exists due to the plasma protein fibrinogen.  E.W. Merrill et al. 

(1965) investigated the pressure flow relations of human blood 

passing through straight and curved glass and plastic tubes. S.E. 

Charm et al. (1965) represented the viscometry of human blood by 

a number of empirical equations and used the Casson’s equation to 

calculate the shear strength of blood. C.E. Huckaback et al. (1968) 

presented a generalized approach for modelling the blood flow 

through arteries and used the model to calculate the localized 

arterial wall elasticity. G.E. Saito et al. (1975) discussed the 

significance of viscoelasticity in arterial blood flow models and 

concluded that the arterial walls in single large artery models may 

be taken purely elastic. C.S. Peskin (1977) analyzed the blood flow 

in the heart numerically in the presence of moving immersed 

boundaries which include the muscular heart valve. B.B. Gupta et 

al. (1982) developed a three layer semi – empirical model for blood 

flow and other particular suspensions in narrow tubes with a thin 

cell - free layer, cell depleted one and a central core with uniform 

cell concentration. V.K. Sud et al. (1985) studied the flow variables 

of blood flow in single large arteries by subjecting it to the pulsating 

pressure gradient and externally – imposed body accelerations. N. 
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Rudraiah (1985) investigated the steady laminar flow of blood 

through a parallel plate channel bounded below by a porous layer of 

finite thickness and bounded above by a rigid impermeable plate 

moving with a uniform velocity and concluded that the finite 

thickness of porous layer affects the blood flow only for larger 

values of viscosity factor and small values of the porous parameter. 

R.E. Larson et al. (1986) studied the microscopic axial flow through 

infinite and semi – infinite lattices of cylindrical inclusions and 

examined the influence of lattice geometry and inclusion shape on 

the permeability and surface flow. R.E. Larson et al. (1987) studied 

the microscopic transverse flow through infinite and semi – infinite 

periodic lattices of cylindrical inclusions. J.C. Misra et al. (1988) 

gave a mathematical analysis of blood flow under a periodic 

acceleration field under two cases: in one case, the arterial wall is 

taken as the orthotropic elastic cylindrical membrane and in another 

case, the wall tissues are taken to exhibit the experimentally 

observed material damping properties. P. Chaturani et al. (1990) 

discussed a Casson fluid model for the pulsatile nature of blood 

flow under an action of periodic body acceleration. Y.l. Cho et al. 

(1991) investigated the effects of the non – Newtonian viscosity of 

blood on a flow through a coronary arterial casting and observed 

that this effect on the overall pressure drop is significant for a flow 

with Reynolds number 100 or less. J.M. Huyghe et al. (1992) 

described a porous medium model of the beating left ventricle 

which included the torsion around the axis of symmetry of ventricle, 

transmural variation of fiber angle and redistribution of intracoronary 

blood in the myocardial wall. B. Das et al. (1995) studied the non – 

Newtonian flow of blood in an arteriosclerotic blood vessel with rigid 

permeable walls and found that the wall permeability significantly 

affects the flow resistance and wall shear stress. R.K. Dash et al. 

(1997) investigated the influence of yield stress on the flow 

variables of Casson fluid in a homogeneous porous medium 
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bounded by a circular tube and concluded that the minimum 

pressure gradient to start the flow is independent of the permeability 

of the porous medium and is equal to the yield stress of the fluid. R. 

Usha et al. (1999) presented a particle fluid suspension model for 

the pulsatile blood flow under the effect of periodic body 

acceleration and found that the amplitude of instantaneous flow rate 

due to body acceleration decreases with decrease in the tube 

radius. P. Nardinocchi et al. (2005) developed a continuum model 

for a vascular segment to investigate the blood – vessel interactions 

in a finite arterial segment of the cardiovascular tree. Y. Huo et al. 

(2006) presented a Womersely type mathematical model to study 

the pulsatile blood flow in diastole in the absence of vessel tone in 

the entire coronary arterial tree. N. Westerhof et al. (2006) 

discussed the mechanical aspects of cross talk between cardiac 

muscle and coronary vasculature including the extracellular matrix 

and noticed that the influence of cardiac muscle on the coronary 

vasculature depends upon the changes in muscle length but seems 

to be very small. J. Jung et al. (2006) simulated the blood flow 

patterns and particulate build up by applying the multiphase non – 

Newtonian principle of dense suspension hemodynamics in a 

realistic right coronary artery having various cross – sections and 

found that the increase in the initial plasma viscosity causes the 

decrease in wall shear stress. J. Chen et al. (2006) applied the 

Carreau– Yasuda model to study the pulsatile non – Newtonian 

blood flow in a bifurcation model with a non- planar daughter branch 

and showed that the non – planarity deflects the blood flow from the 

inner wall of the vessel to the outer wall. F. Song et al. (2007) used 

the microcirculation method or porous flow model to study the blood 

and tissue liquid flow and showed that the more threshold stress 

causes the greater flow resistance. V.P. Srivastava (2007) 

proposed a two – fluid theoretical model with a core region of 

suspension of all the erythrocytes in plasma and a peripheral layer 
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of cell-free plasma in small diameter tubes. P.K. Mandal et al. 

(2007) studied the influence of externally imposed periodic body 

accelerations on unsteady pulsatile flow of a power – law fluid 

through a stenosed artery of elastic walls. J. Spaan et al. (2008) 

studied the coronary structure which is responsible for the blood 

circulation through the heart muscle and observed that the 

perfusion of the myocardium can be affected by the microvascular 

diseases or by the arterial stenosis. V.M. Calo et al. (2008) used a 

multiphysics mathematical model to represent the blood flow and 

drug transport in patient specific coronary arteries taking arterial 

walls as a linear poroelastic medium and drug delivery as a scalar 

advection – diffusion equation. D.S. Sankar et al. (2010) studied the 

two – fluid model to discuss the unsteady blood flow through 

stenosed tapered arteries with the suspension of all the 

erythrocytes as a Herschel – Bulkley fluid in the core region and the 

plasma in the peripheral layer and found that the flow rate 

decreases with the increase in the tapering angle. J.C. Misra et al. 

(2011) developed a mathematical model to study the blood flow 

through a porous artery with two stenoses under the influence of 

externally imposed magnetic field. I.M. Eldesoky (2012) discussed 

the slip effects on the unsteady pulsatile flow of blood through 

porous medium under externally applied periodic body 

accelerations and magnetic field and observed that the Knudsen 

number of slip condition greatly affects the blood flow. S. Pramanik 

(2014) investigated the flow and heat transfer of a Casson fluid 

towards an exponentially permeable stretching surface with thermal 

radiation which enhances the effective thermal diffusivity. 
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A CASSON FLUID MODEL FOR THE STEADY 

FLOW THROUGH A STENOSED BLOOD 

VESSEL 

2.1 Introduction 

Many researchers have now established this fact that stenosis is 

causing a number of deaths in several countries and this problem 

needs to be dealt seriously. In a stenosed artery, the wall thickens 

because of an abnormal development along the lumen of the wall 

which in turn; affects the hemodynamic behaviour of the blood flow. 

According to medical experts, the blood vessel narrows when the 

macrophage white blood cells gather near the arterial wall; and the 

fat and cholesterol from the macrophages are not sufficiently 

removed by the High Density Lipoproteins. It has been observed 

that the blood behaves like a Newtonian fluid at high shear rate and 

it behaves like a non – Newtonian fluid at low shear rate due to 

which it requires a certain yield stress for smooth flow. So far 

various mathematical models have been proposed by many 

researchers to study the different features of the blood. 

S. Rodbard (1966) studied the dynamics of blood flow in stenotic 

lesions. D.F. Young (1968) analyzed the effect of an axially 

symmetric time-dependent growth into the lumen of a tube of 

constant cross-section on the steady flow of a Newtonian fluid. P. 

Chaturani and D. Biswas (1983) made a theoretical study of blood 

flow through stenosed artery with slip velocity at wall. S. 

Chakravarty (1987) studied the effects of stenosis on the flow 

behaviour of blood in an artery. N.P. Smith et al. (2002) presented 

an anatomically based model of transient coronary blood flow 

through an artery with mild stenosis viz. two –  layered model for 

different shapes of stenosis and slip velocity at the wall. B.K. Mishra 
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et al. (2008) studied the effect of resistance parameter on uniform 

and non – uniform portion of artery for non – Newtonian fluid model 

of blood flow through an arterial stenosis. B. Singh et al. (2010) 

explored blood flow through an artery having radially non – 

symmetric mild stenosis by taking blood as a power law fluid and D. 

Biswas et al. (2011) represented a non – Newtonian model for the 

steady flow of blood through a stenosed artery by assuming blood 

as a Herschel – Bulkley fluid and a slip velocity near the arterial 

wall. S.S. yadav et al. (2012) suggested a Bingham plastic model to 

discuss the blood flow characteristics through a generalized 

atherosclerotic artery with multiple stenosis.  

2.2 Mathematical Formulation 

Consider a laminar, steady and incompressible blood flow through a 

cylindrical artery; which is stenosed in an axially symmetric manner. 

The geometry of the artery is given by figure 2.0: 

Let the radius of the artery is R�(z�) in the stenotic region and R�� in 

the non – stenotic region which can be given as (Young, 1968):  

R�(z�) = �
R�� −

��

�
�1 + cos

�π

�̅�
�z�� + l̅� − z���    ;z�� ≤ z� ≤ z�� + l̅�

R��                                                 ;otherwise

� (2.2.1) 

whereh�,l̅�  and z��  represent the maximum height, length and the 

position of the stenosis in the artery whose whole length is l̅. Also, 

let r̅ and z� are the radial and axial coordinates.  

In this study the blood is considered to behave like a Casson fluid. 

Under the above assumptions, the equations of motion for the blood 

can be written as  

−
���

���
+

�

��

�

���
(r̅τ̅�) = 0       (2.2.2) 
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Figure 2.0: Geometry of the Stenosed Artery 



 

17 
 

���

���
= 0         (2.2.3) 

where p�  represents the pressure at any point and τ̅�  denotes the 

shear stress of the blood. The constitutive equation of a Casson 

fluid can be simplified as  

F(τ̅�) = −
����

���
=

�

���
�τ̅�

�/�
− τ̅�

�/�
�
�
   for τ̅� ≥ τ̅�   (2.2.4) 

����

���
= 0             for τ̅� ≤ τ̅�   (2.2.5) 

where v��  represents the axial velocity of blood, τ̅�  stands for the 

yield stress and k�� is the viscosity of the fluid. The equations (2.2.2) 

to (2.2.5) are applied to the following boundary conditions: 

�v�� = v��                                                  at r̅= R�(z�)

τ̅� = Finite value                          at r̅= 0
�   (2.2.6) 

where v�� denotes the slip velocity in the axial direction. 

Introducing following non – dimensional quantities: 

R(z) =
��(��)

���
,z =

���� �̅����

��̅
,r=

��

���
,
��

��
=

���

���

���
, τ� =

τ̅�

������/�
,                    

τ� =
τ̅�

������/�
, H=

��

���
, v� =

���

�������/����
,v� =

���

�������/����
,    (2.2.7)  

where p�� represents absolute typical pressure gradient.  

Using the above non – dimensional scheme, the radius of the 

stenotic region of the artery becomes 

R�(z�) = �R
�
� −

h�

2
(1 + cos 2πz)       ;0 ≤ � ≤ 1

R��                                          ;otherwise

� 

⇒ R(z) = �
1 − H cos� πz                ;0 ≤ �≤ 1
1                                        ;otherwise

�   (2.2.8) 
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The equations of the motion in the non – dimensional form are  

−2
�p

�z
+

1

r

�

��
(rτ�) = 0       (2.2.9) 

��

��
= 0  (2.2.10) 

Constitutive equations of Casson fluid in the non – dimensional 

form are     

−
���

��
= �τ�

�/�
− τ�

�/�
�
�
         for τ� ≥ τ� (2.2.11) 

���

��
= 0         for τ� ≤ τ� (2.2.12) 

The dimensionless boundary conditions (2.2.6) are  

�v� = v�                                                   at r= R(z)
τ� = Finite value                           at r= 0

� (2.2.13) 

Applying the condition (2.2.13) to the equation (2.2.9), we can write 

the expressions for the shear stress τ�  and wall shear stress τ� 

given as  

τ� = −r
��

��
 (2.2.14) 

τ� = −R(z)
��

��
 (2.2.15) 

From equations (2.2.14) and (2.2.15), 

��

��
=

�

�
 (2.2.16)        

whereR = R(z) 
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2.3 Method of Solution 

Integrating equation (2.2.11) using equations (2.2.13) and (2.2.15), 

we get the velocity function for r� ≤ r≤ R(z) where r� =
���

���
 is the 

dimensionless radius of the plug flow region, given as 

v� = v� +
�

���
�(τ�

� − τ�
�) −

�

�
τ�
�/�

�τ�
�/�

− τ�
�/�

�+ 2τ�(τ� − τ�)� (2.3.1) 

within plug flow region i.e. 0 ≤ r≤ r�, τ� = τ� at r= r� 

Then equation (2.3.1) gives the plug flow velocity as  

v� = v� +
�

���
�τ�

� −
�

�
τ�
� −

�

�
τ�
�/�

τ�
�/�

+ 2τ�τ��   (2.3.2) 

The volumetric flow rate in the dimensionless form for the region 

0 ≤ r≤ R(z) can be obtained as  

Q = 4� rv(r)dr
�

�

 

   = 4∫ rv�dr+ 4∫ rv�dr
�

��

��
�

 

Hence  

Q = 2R�v� +
���

��
� �

�

�
τ�
� −

�

�
τ�
�/�

τ�
�/�

+
�

�
τ�τ�

� −
�

��
τ�
��  (2.3.3) 

If τ� ≪ τ�i.e.  
τ�

τ�
≪ 1, then equation (2.3.3) takes the form 

Q = 2R�v� +
��

�
�τ� −

��

�
τ�
�/�

τ�
�/�

+
�

�
τ��    (2.3.4) 

which gives us the wall shear stress for the artery with stenosis as  

τ� = �
�

�
τ�
�/�

+ �
�

��
(Q − 2R�v�) −

�

���
τ��

�/�
�
�

   (2.3.5) 
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When there is no stenosis i.e. R(z) = R� then the wall shear stress 

for the non – stenotic artery is given as  

τ� = �
�

�
τ�
�/�

+ �
�

��
� (Q − 2R�

�v�) −
�

���
τ��

�/�
�
�

   (2.3.6) 

Using equation (2.3.5) in equation (2.2.15), we get the pressure 

gradient as  

��

��
= −

�

�
�
�

�
τ�
�/�

+ �
�

��
(Q − 2R�v�) −

�

���
τ��

�/�
�
�

   (2.3.7) 

2.4 Results and Discussion 

The velocity profile for the axial velocity in the non – plug flow 

region has been obtained in equation (2.3.1) and results are 

analyzed graphically in figures 2.1(a), 2.1(b), 2.2(a) and 2.2(b). 
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Figures 2.1(a) shows the variations of the axial velocity along the 

axial distance z for the different values of the shear stress τ� and 

wall yield stress τ�  with some fixed values like τ� = 0.070  and 

v� = 0.0  i.e. no slip condition. It is clear that the axial velocity 

increases and after a certain point, it starts decreasing and again 

increases along the axial distance z. The axial velocity slows down 

when there is a decrease in the yield stress. 
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In Figure 2.1(b), the variations of the axial velocity along the radial 

distance R(z) have been shown for the different values of the shear 

stress τ� and wall yield stress τ� taking τ� = 0.070 and v� = 0.0. It is 

clear that the axial velocity decreases with the increase in shear 

stress but it decreases rapidly with the increase in yield stress. The 

axial velocity is greater for the greater radius of the stenosis region 

of the artery.  
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Figure 2.2(a) shows the variations of the axial velocity along the 

axial distance z for  different values of shear stress τ�  and slip 

velocity v�  with τ� = 0.010 and τ� = 0.070. It shows that the axial 

velocity fluctuates i.e. increases and after certain point decreases 

and again starts increasing along the axial distance z. The axial 

velocity increases with the increase in slip velocity. 
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Figure 2.2(b) shows the variations of the axial velocity along radial 

distance R(z) for the different values of the shear stress τ� and slip 

velocity v�  fixing some values as τ� = 0.010 and τ� = 0.070. It is 

observed that there is an increase in the axial velocity with a 

decrease in shear stress. 
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The axial velocity for the plug flow region obtained through equation 

(2.3.2) has been graphically presented in figure 2.3(a). It shows the 

variations of the plug flow velocity along the axial distance z for the 

various values of the yield stress τ� and slip velocity v� with a fixed 

value τ� = 0.070. The plug flow velocity has wave – like variations 

along the axial distance z. Also the plug flow velocity increases 

when the slip velocity increases and it decreases for an increase in 

the yield stress. 
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Figure 2.3(b) shows the variations of the plug flow velocity with the 

change in radial distance R(z) for the different values of the yield 

stress τ�  and slip velocity v�  with τ� = 0.070 . The graph also 

clarifies the fact that the axial velocity in the plug flow region 

increases due to an increase in slip velocity but the increase in yield 

stress decreases the plug flow velocity rapidly.  
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Figure 2.4(a) shows the variations of the volumetric flow rate 

derived in equation (2.3.4) along the radial distance R(z) for the 

various values of the yield stress τ�  and slip velocity v�  with 

τ� = 0.070. The volumetric flow rate increases as the slip velocity 

increases but it decreases with increase in yield stress.  
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Figure 2.4(b) shows the changes in the volumetric flow rate along 

the height H  of the stenosis for the different values of the yield 

stress τ� and wall slip velocity v� with τ� = 0.070. It is observed that 

the volumetric flow rate decreases as the height of the stenosis 

increases but the volumetric flow rate increases with increase in slip 

velocity.   
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Figure 2.5(a) shows variations of the wall shear stress obtained in 

equation (2.3.5) along the radial distance R(z)  for the different 

values of the yield stress τ� and slip velocity v� with Q = 1. It shows 

that the wall stress decreases as the slip velocity increases and 

increases with the increase in yield stress. 
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In figure 2.5(b), the changes in the wall shear stress are plotted 

against the height H  of the stenosis for the different values of the 

yield stress τ� and wall slip velocity v� with a fixed value Q = 1. It 

shows that the wall shear stress increases continuously as the 

height of the stenosis increases but goes on decreasing when the 

yield stress increases.  The wall shear stress decreases as the slip 

velocity increases. 
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Figure 2.6(a) shows the variations of the pressure gradient obtained 

in equation (2.3.7) along the radial distance R(z) for various values 

of the yield stress τ�  and slip velocity v�  assuming a fixed value 

Q = 1. Figure also shows that the pressure gradient increases with 

the increase in slip velocity with a slower rate for higher values of 

the yield stress.  
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Figure 2.6(b) shows the variations of the pressure gradient along 

the height H  of the stenosis. These variations are plotted for the 

various values of the yield stress τ� and wall slip velocity v� with a 

fixed value Q = 1 . It is observed that the pressure gradient 

decreases as the height of the stenosis increases but it increases 

when the slip velocity increases. 
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2.5 Conclusion 

This chapter makes a theoretical study regarding the various blood 

flow properties through a stenosed artery assuming blood as a 

Casson fluid. It shows that the axial velocity increases due to an 

increase in slip velocity but it decreases as the shear stress and 

yield stress increase along the radial distance R(z). The yield stress 

slows down the axial velocity in both plug flow as well as non – plug 

flow regions. The volumetric flow rate increases when the slip 

velocity increases but it begins to decrease when the yield stress 

increases. The wall stress decreases with increase in slip velocity 

and increases with increase in yield stress. The pressure gradient 

grows with a growth in slip velocity and yield stress. The effects of 

the stenosis on other flow properties like volumetric flow rate, wall 

shear stress and pressure gradient have also been studied and the 

analysis shows that these flow properties decrease as the height of 

the stenosis increases. 
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SLIP EFFECTS ON STEADY FLOW THROUGH 

A STENOSED BLOOD ARTERY 

3.1 Introduction 

It is now a well proved fact that stenosis has become a serious 

threat to the life which needs an immediate attention. The artery 

becomes stenosed when its wall becomes fatty due to abnormal 

development along the lumen of the wall. Because of this stenosis 

the hemodynamic behaviour of the blood flow is badly affected. The 

stenosis of the artery gives rise to many medical problems like 

stroke, heart attack and serious circulatory disorders. 

Many researchers have proved that the blood behaves like a 

Newtonian fluid at high shear rate and it behaves like a non – 

Newtonian fluid at low shear rate. Y. Nubar (1971) studied the blood 

flow, slip and viscometry and the study showed that the viscosity 

indications would exhibit a flow dependent behaviour of much the 

same pattern as the actual indications supplied by the usual 

viscometers if the slip function is of plausible form. M.D. Despande 

et al. (1976) discussed the steady laminar flow through modelled 

vascular stenosis and compared the theoretical results with 

available experimental values. J.B. Shukla et. al. (1980) analyzed 

the effects of stenosis on non – Newtonian flow of the blood in an 

artery and showed that the increments in the size of the stenosis 

produce small increments in the flow resistance and wall shear 

stress as the blood shows a non – Newtonian behaviour. K. Haldar 

(1985) studied the effects of stenosis shape on blood flow 

resistance and proved that the variations in the stenosis shape may 

decrease the flow resistance but the symmetric stenosis gives 

maximum resistance to flow. L.M. Srivastava (1985) also discussed 

the flow of couple stress fluid through stenotic blood vessels and 
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showed that the flow resistance and wall shear stress in case of 

mild stenosis of non – Newtonian blood are increased over those 

with no stenosis by 60% and 62% respectively in comparison to the 

Newtonian fluid. J.C. Misra et al. (1993) presented a non – 

Newtonian model for blood flow through arteries under stenotic 

conditions and gave a qualitative analysis for the frequency 

variations of flow rate at various points of the artery, phase 

velocities and transmission per wavelength. J.C. Misra et al. (2007) 

discussed the role of slip velocity in blood flow through stenosed 

arteries considering the blood as a Herschel – Bulkley fluid and 

investigated the influence of the slip at the wall of the vessel with 

mild, moderate and severe stenoses. D. Biswas et al. (2011) gave a 

non – Newtonian model to study the steady blood flow through a 

stenosed artery taking blood as a Herschel – Bulkley fluid and 

observed that axial velocity, flow rate increase with slip and 

decrease with yield stress. A. Sinha et al. (2013) studied the effects 

of externally imposed periodic body acceleration on blood flow 

taking slip velocity on the arterial wall with time-dependent stenosis. 

3.2 Mathematical Formulation 

Laminar steady flow of an incompressible Casson fluid through a 

cylindrical artery having axially symmetric stenosis is considered. 

The geometry of the artery is described in figure 2.0.  

Let R�(z�) be the radius of the artery in the stenotic region and R�� in 

the non – stenotic area given as (Young, 1968): 

R�(z�) = �
R�� −

h�

�
�1 + cos

�π

�̅�
�z�� + l̅� − z���    ;z�� ≤ z� ≤ z�� + l̅�

R��                                                 ;otherwise

� (3.2.1) 

where h�,l̅� and z�� are the maximum height, length and the location 

of the stenosis in the artery with whole length l̅. Also, let r̅ and z� are 

the radial and axial coordinates.  
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With above considerations, the equations of motion for the blood 

can be given as  

−
���

���
+

�

��

�

���
(r̅τ��) = 0 (3.2.2) 

���

���
= 0 (3.2.3) 

Here p�  denotes the pressure at any point and τ�� gives the shear 

stress of Casson fluid with the following simplified constitutive 

equations: 

F(τ��) = −
����

���
=

�

���
�τ��

�/�
− τ��

�/�
�
�
  for τ�� ≥ τ��   (3.2.4) 

����

���
= 0                                                   for τ�� ≤ τ��   (3.2.5) 

where v�� is the axial velocity of fluid, τ�̅ represents the yield stress 

and k�� is the fluid viscosity.    

The flow is subject to slip boundary conditions as follows: 

�v�� = β�
����

���
                                             at r̅= R�(z�)

τ�� = Finite value                          at r̅= 0
�   (3.2.6) 

where β� represents the slip length in the axial direction 

Using following non – dimensional quantities: 

R(z) =
��(��)

���
,z =

���� �̅����

�̅�
,r=

��

���
,H =

��

���
,
��

��
=

���/���

���
,τ� =

���

������/�
,

τ� =
���

������/�
,v� =

���

������
�/����

,β =
��

���
 .     (3.2.7)  

where p�� is the absolute typical pressure gradient.  

The non – dimensional radius of the stenotic area of the artery is 

R(z) = �
1 − H cos� πz                     ;0 ≤ z ≤ 1
 1                                             ;otherwise

�   (3.2.8) 
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The non – dimensional forms of the equations of the motion (3.2.2) 

and (3.2.3) are  

−2
��

��
+

�

�

�

��
(rτ�) = 0      (3.2.9) 

��

��
= 0 (3.2.10) 

The constitutive equations (3.2.4) and (3.2.5) of the Casson fluid in 

the dimensionless forms, can be written as     

−
���

��
= (τ�

�/�
− τ�

�/�
)�         for τ� ≥ τ� (3.2.11) 

���

��
= 0         for τ� ≤ τ� (3.2.12) 

The non – dimensional boundary conditions are  

�v� = β
���

��
                                             at r= R(z)

τ� = Finite value                          at r= 0
� (3.2.13) 

Using boundary conditions (3.2.13) in equation (3.2.9), we get the 

expressions for the shear stress τ� and wall shear stress τ� in the 

following forms:  

τ� = −r
��

��
 (3.2.14) 

τ� = −R(z)
��

��
 (3.2.15) 

From equations (3.2.14) and (3.2.15), 

��

��
=

�

�
 (3.2.16)      

where R = R(z) 
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3.3 Method of Solution 

Integrating equation (3.2.11) using equations (3.2.13) to (3.2.15), 

the velocity profile for r� ≤ r≤ R(z) , where r� =
���

���
 is the non – 

dimensional radius of the plug flow region, is 

v� =
R

2τ�
�(τ�

� − τ�
�) −

8

3
τ�
�/�

�τ�
�/�

− τ�
�/�

�+ 2τ�(τ� − τ�)� 

−β�τ�
�/�

− τ�
�/�

�
�
       (3.3.1) 

Within pug flow region i.e. 0 ≤ r≤ r� , τ� = τ� at r= r�.  

Then from equation (3.3.1), the plug flow velocity is  

v� =
�

���
�τ�

� −
�

�
τ�
� −

�

�
τ�
�/�

τ�
�/�

+ 2τ�τ�� − β�τ�
�/�

− τ�
�/�

�
�
 (3.3.2) 

The non – dimensional volumetric flow rate for the region                

0 ≤ r≤ R(z) is calculated as  

Q = 4� rv(r)dr
�

�

 

    = 4∫ rv�dr+
��
�

4∫ rv�dr
�

��
 

Hence  

Q =
2R�

τ�
� �

1

4
τ�
� −

4

7
τ�
�/�

τ�
�/�

+
1

3
τ�τ�

� −
1

84
τ�
�� − 2R�β�τ�

�/�
− τ�

�/�
�
�
 

  (3.3.3) 

If τ� ≪ τ� i.e.  
��

��
≪ 1, then equation (3.3.3) becomes 

Q =
��

�
�τ� −

��

�
τ�
�/�

τ�
�/�

+
�

�
τ�� − 2R�β�τ�

�/�
− τ�

�/�
�
�
  (3.3.4) 
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which can also be used to get the wall shear stress for the stenosed 

artery given as  

τ� = �
�

�
�
�����

����
� τ�

�/�
+ �

��

��(����)
+

��

��

(�����)�

(����)�
τ� −

�

�
�
����

����
� τ��

�/�

�
�

 

         (3.3.5) 

For an artery without stenosis i.e. R(z) = R�, the wall shear stress is 

given as  

τ� = �
�

�
�
������

�����
� τ�

�/�
+ �

��

��
�(�����)

+
��

��

(������)
�

(�����)�
τ� −

�

�
�
�����

�����
� τ��

�/�

�
�

 

         (3.3.6) 

Now using equation (3.3.5) in equation (3.2.15), we can compute 

the pressure gradient as  

��

��
= −

�

�
�
�

�
�
�����

����
� τ�

�/�
+ �

��

��(����)
+

��

��

(�����)�

(����)�
τ� −

�

�
�
����

����
�τ��

�/�

�
�

 

         (3.3.7) 

3.4 Results and Discussion 

The velocity profile for the axial velocity in the non – plug flow 

region has been obtained in equation (3.3.1) and results are 

analyzed using graphs in figures 3.1(a) and 3.1(b). 
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Figures 3.1(a) shows the variations of the axial velocity along the 

axial distance z for the different values of the shear stress τ� and 

slip length β  with some fixed values τ� = 0.070 , τ� = 0.010  and 

H = 0.1. It is clear that the axial velocity first increases and then 

decreases after attaining a maximum value along the axial distance 

z. It also clarifies that the axial velocity increases whenever the 

velocity slip β increases and it decreases for the increasing values 

of the shear stress. 
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Figure 3.1(b) shows the variations of the axial velocity along the 

radial distance R(z) for the different values of the shear stress τ� 

and slip length β with some fixed values τ� = 0.070 and τ� = 0.010. 

Graph shows that the axial velocity is increasing along the radial 

distance. Also, the axial velocity increases when the velocity slip 

increases and it decreases as the shear stress increases.  
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The axial velocity for the plug flow region obtained through equation 

(3.3.2) has been analyzed in figure 3.2(a) which shows the 

variations of the plug flow velocity along the axial distance z taken 

for the different values of the yield stress τ� and slip length β with 

fixed values τ� = 0.070 and H = 0.1. It is observed here that the 

plug flow velocity is showing wavy variations along the axial 

distance z. Also the plug flow velocity increases as the velocity slip 

increases and it decreases when the yield stress increases. 
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Figure 3.2(b) shows the variations of the axial velocity along radial 

distance R(z) for the different values of the yield stress τ� and slip 

length β with other fixed values τ� = 0.070. It shows that the plug 

flow velocity increases along the radial distance and it decreases 

when the yield stress increases. Also the plug flow velocity 

increases as the velocity slip increases. It is to be noted here that 

for the greater values of the yield stress, the plug flow velocity 

increases slowly as the velocity slip increases as compared to the 

lower values of the yield stress.   
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The volumetric flow rate derived through equation (3.3.4) has been 

graphically presented in figures 3.3(a) and 3.3(b). Figure 3.3(a) 

shows the variations of the volumetric flow rate along the radial 

distance R(z) for the various values of the yield stress τ� and slip 

length β with a fixed value τ� = 0.070. Clearly the volumetric flow 

rate increases along the radial distance. It is observed that the 

volumetric flow rate increases as the velocity slip increases but it 

decreases when the yield stress increases. Also, the volumetric flow 

rate increases at a little slower rate for the greater values of the 

yield stress.  
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Figure 3.3(b) presents the variations of the volumetric flow rate are 

shown along the height of the stenosis H  for the different values of 

the yield stress τ�  and wall slip length β  with fixed values τ� =

0.070and z = 0.4. It is obvious that the volumetric flow rate slows 

down along the height of the stenosis with increments in yield stress 

but it increases when the slip length increases.  

 

  



46 
 

Figure 3.4(a) explains the variations of the wall shear stress 

obtained in equation (3.3.5) along the radial distance R(z) for the 

different values of the slip length β with a fixed value Q = 1. It shows 

that the wall shear stress decreases along the radial distance. Also 

the wall shear stress decreases when velocity slip increases. 
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Figure 3.4(b) shows the variations of the wall shear stress along the 

height of the stenosis H  for the different values of the yield stress τ� 

and wall slip length β with some fixed values Q = 1 and z = 0.4. It is 

clear that the wall shear stress increases along the height of the 

stenosis. Also the wall shear stress increases as the yield stress 

increases and it decreases when the velocity slip increases. 
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The variations of the pressure gradient obtained in equation (3.3.7) 

are shown in figures 3.5(a) and 3.5(b). Figure 3.5(a) shows that the 

variations of the pressure gradient along the radial distance R(z) for 

the different values of the slip length β with a fixed value Q = 1. The 

pressure gradient increases along the radial distance and it 

increases with the increase in velocity slip. 
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Figure 3.5(b) gives the variations of the pressure gradient along the 

height of the stenosis H  for the various values of the yield stress τ� 

and wall slip length β with some fixed values Q = 1 and z = 0.4. It is 

observed that the pressure gradient decreases greatly along the 

height of the stenosis. Also the pressure gradient decreases 

whenever the yield stress increases and it increases as the velocity 

slip increases. 
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3.5 Conclusion 

This chapter is an attempt to present the theoretical observations of 

the different flow features by considering a stenosed artery with 

blood behaving like a Casson fluid. The results are explained 

analytically and graphically by choosing some suitable parameters. 

The graphical analysis of the study reveals that the axial velocity is 

showing the wave like variations along the axial distance z and for 

increments in velocity slip, it increases in both plug flow and non – 

plug flow domains. Also the axial velocity increases along the radial 

distance as the slip length increases in both plug flow and non – 

plug flow regions. The volumetric flow rate increases along the 

radial distance as the velocity slip increases. The axial velocity and 

the volumetric flow rate decrease when the yield stress increases. It 

is observed that the plug flow velocity and the volumetric flow rate 

increase gradually for the greater values of the yield stress as 

compared to the lower yield stress. The wall shear stress decreases 

and the pressure gradient increases along the radial distance as the 

velocity slip increases. The analysis regarding the effect of the 

stenosis over other flow properties like volumetric flow rate, wall 

shear stress and pressure gradient has also been done. The 

volumetric flow rate and the pressure gradient decrease when the 

yield stress increases but they increase with increments in velocity 

slip along the height of the stenosis. Also the wall shear stress 

increases as the yield stress increases and it decreases when the 

velocity slip increases along the height of the stenosis. 
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UNSTEADY SLIP FLOW OF BLOOD THROUGH 

CONSTRICTED ARTERY 

4.1. Introduction 

The hemodynamic behaviour of flows through the constricted 

arteries have always drawn attention of the researchers as it puts 

the health at risk which sometimes proves fatal. One basic reason 

of the constriction of the artery is the deposits of fatty and fibrous 

tissues in the arterial wall which restricts the normal blood flow 

through the artery. Many research workers have made valuable 

contributions to understand the various flow properties through the 

constricted arteries.  

A.C. Burton (1966) made several experiments to study the effects 

of whole body accelerations on human bodies and presented 

empirical data regarding the relations between blood flows and the 

radii of the blood vessels. D.F. Young (1968) discussed the effect of 

an axially symmetric time-dependent stenotic growth into the lumen 

of a tube of constant cross-section over the steady flow of a 

Newtonian fluid. P. Chaturani et al. (1986) studied the pulsatile flow 

of a Casson fluid through stenosed arteries with application to blood 

flow. S. Chakravarty et al. (1994) presented a mathematical model 

for the blood flow through an overlapping time-dependent arterial 

stenosis by taking the experimentally established viscoelastic 

properties of the blood and deformability of the arterial wall. A.V. 

Mernone (2002) et al. performed a mathematical study of peristaltic 

transport of a Casson fluid and found the analytical and numerical 

solutions for the zeroth and first order in stream function. H. Jung et 

al. (2004) studied the asymmetric flows of non – Newtonian fluids in 

symmetric stenosed artery and discussed the characteristics of 

pulsatile blood flow. R.N. Pralhad et al. (2004) modelled the arterial 
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stenosis and studied its application in blood diseases assuming 

blood as a couple – stress fluid. K.Y. Volokh (2006) studied the 

stresses in growing soft tissues and showed that the uniform 

volumetric growth can lead to the deposits of residual stresses in 

blood arteries due to the material anisotropy. T. Ishikawa (2007) 

performed the numerical simulation of a low- hematocrit blood flow 

in a small artery with stenosis and showed that the erythrocytes are 

considerably deformed around the stenosis. S.U. Siddiqui et al. 

(2010) studied pulsatile flow of blood through stenosed arteries and 

found that the width of the plug core region increases with 

increasing value of yield stress at any time. Author in previous 

chapter 2, presented a Casson fluid model for the steady flow 

through a stenosed blood vessel in which the author showed that 

the axial velocity, volumetric flow rate and pressure gradient 

increase with the increase in slip velocity and decrease with growth 

in yield stress. Author studied the slip effects on steady flow through 

a stenosed blood artery and showed that axial velocity, volumetric 

flow rate and pressure gradient decrease along the radial distance 

as the slip length increases but the wall shear stress increases with 

increase in slip length in chapter 3. 

4.2. Mathematical Formulation 

Consider an incompressible blood with a laminar unsteady flow 

through a cylindrical blood artery which is stenosed with an axially 

symmetric stenosis. The geometrical diagram of the stenosis is 

shown by figure 2.0. 

Let R�(z�) be the radius of the vessel in the constricted region and R�� 

in the non – stenotic area given as (Young, 1968):  

R�(z�) = �
R�� −

��

�
�1 + cos

�π

�̅�
�z�� + l̅� − z���    ;z�� ≤ z� ≤ z�� + l̅�

R��                                                 ;otherwise

� (4.2.1) 



53 
 

where h�,l̅� and z�� are the maximum height, length and the location 

of the stenosis in the vessel of the length l̅. Also, let r̅ and z� 

represent the radial and axial coordinates.  

Here the blood is assumed to behave like a Casson fluid. 

Considering the above assumptions, the equations of motion for the 

blood can be written as  

ρ�
����

��̅
= −

���

���
+

�

��

�

���
(r̅τ�̅)      (4.2.2) 

���

���
= 0         (4.2.3) 

Where ρ� denotes the density of blood, p� is the pressure at any point 

at time t̅ and τ�̅ is the shear stress. The constitutive equations for 

Casson fluid are: 

F(τ�̅) = −
����

���
=

�

���
�τ�̅

�/�
− τ�̅

�/�
�
�
   for τ�̅ ≥ τ�̅   (4.2.4) 

����

���
= 0                                                   for τ�̅ ≤ τ�̅   (4.2.5) 

Here v��  gives the axial velocity of blood, τ�̅  represents the yield 

stress and k�� is the fluid viscosity. The equations (4.2.2) to (4.2.5) 

are governed with the following boundary conditions: 

�v�� = v��                                                  at r̅= R�(z�)

τ�̅ = Finite value                          at r̅= 0
�   (4.2.6) 

where v�� is the slip velocity in the axial direction. 

The pressure gradient is a function of z�  and t̅, hence it can be 

expressed as  

���

���
(z�,t̅) = p��(z�)+ p��(z�)cos(ω�.t̅)     (4.2.7) 
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Here p��  is the steady – state amplitude and p��  is the fluctuating 

amplitude of the pressure gradient with a period ω� = 2πf̅ where f̅ is 

the pulse frequency. 

Applying the following non – dimensional quantities: 

R(z) =
��(��)

���
,z =

���� �̅����

�̅�
,r=

��

���
, τ� =

τ�̅

������/�
, τ� =

τ�̅

������/�
,    

v� =
���

������
�/����

,v� =
���

������
�/����

,H =
��

���
,α� =

ω�ρ����
�

���
,t= ω�.t̅,e =

���

���
   

(4.2.8)  

wheree represents the amplitude of the flow and α  defines the 

pulsatile Reynold number which is also known as the Womersley 

parameter. 

Hence the dimensionless radius of the stenotic area of the artery is 

R(z) = �
1 − H cos� πz                     ;0 ≤ z ≤ 1
 1                                             ;otherwise

�    (4.2.9) 

The non – dimensional form of equation of the motion (4.2.2) is 

α�
���

��
= − 2ϕ +

�

�

�

��
(rτ�) (4.2.10) 

where ϕ ≡ ϕ(t) = 1 + ecost 

The non – dimensional constitutive equations of Casson fluid are   

−
���

��
= (τ�

�/�
− τ�

�/�
)�         for τ� ≥ τ� (4.2.11) 

���

��
= 0         for τ� ≤ τ� (4.2.12) 

The dimensionless boundary conditions are 

�v� = v�                                                   at r= R(z)

τ� = Finite value                           at r= 0
� (4.2.13) 
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4.3. Method of Solution  

In order to get the required solutions of the problem, the 

perturbation method is used for which  α� << 1 is taken to maintain 

the non – Newtonian nature of the blood in which a plug flow region 

is developed through the constricted arteries in small blood vessels 

like coronary arteries. Then the axial velocity v�, plug flow velocity 

v�, shear stress τ� and the plug core radius r� can be expressed in 

the powers of α� given as  

v� = v�� + α�v�� + α�v�� + ⋯      (4.3.1) 

v� = v�� + α�v�� + α�v�� + ⋯      (4.3.2) 

τ� = τ�� + α�τ�� + α�τ�� + ⋯      (4.3.3) 

r� = r�� + α�r�� + α�r�� + ⋯      (4.3.4) 

where r� =
���

���
 is the non – dimensional radius of the plug core. 

Using equations (4.3.1) & (4.3.3) in equation (4.2.10), we get  

����

��
=

�

�

�

��
(rτ��)       (4.3.5) 

�

��
(rτ��) = 2rϕ        (4.3.6) 

Substituting equations (4.3.1) & (4.3.3) in equation (4.2.11), we 

have  

−
����

��
= τ�� + τ� − 2τ�

�/�
.τ��
�/�

     (4.3.7) 

−
����

��
= τ�� �1 − �

τ�

τ��
�
�/�

�      (4.3.8) 
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Using equation (4.3.1), the boundary conditions (4.2.13) reduce to  

�v�� = v�
v�� = 0� at r= R      (4.3.9) 

where R = R(z) 

Integrating equation (4.3.6) and using condition (4.2.13), we get 

τ�� = rϕ  (4.3.10) 

Using equation (4.3.10), equation (4.3.7) on integration yields 

v�� =
1

2
ϕ(R� − r�) −

4

3
τ�
�/�

ϕ�/��R�/� − r�/��+ τ�(R − r) + v� 

 (4.3.11) 

The expression for v��  is obtained by putting r= r��  in equation 

(4.3.11) given as 

v�� =
�

�
ϕ�R� − r��

� �−
�

�
τ�
�/�

ϕ�/��R�/� − r��
�/�

�+ τ��R − r���+ v� 

 (4.3.12) 

Integrating equation (4.3.5) using equation (4.3.11) and (4.2.13), we 

get 

τ�� =
�

�
ϕ� �

�

�
R�r−

�

�
r��−

�

�
τ�
�/�

ϕ�ϕ��/� �
�

�
R�/�r−

�

�
r�/��  (4.3.13) 

where ϕ� =
��

��
 

Applying equations (4.3.10) and (4.3.13) in equation (4.3.8) and 

then integrating, we obtain  
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v�� =
1

2
ϕ� �

3

16
R� −

1

4
R�r� +

1

16
r��

−
2

3
τ�
�/�

ϕ�ϕ��/� �
33

196
R�/� −

1

4
R�/�r��+ �4

49
r�/��

−
1

2
τ�
�/�

ϕ�ϕ��/� �
11

42
R�/� −

1

3
R�r�/� +

1

14
r�/��

+
2

3
τ�ϕ

�ϕ�� �
5

21
R� −

1

3
R�/�r�/� +

2

21
r�� 

 (4.3.14) 

Substitution of r= r�� in equation (4.3.14) yields the expression for 

v�� given as 

v�� =
1

2
ϕ� �

3

16
R� −

1

4
R�r��

� +
1

16
r��
� �

−
2

3
τ�
�/�

ϕ�ϕ��/� �
33

196
R�/� −

1

4
R�/�r��

� �+ �4

49
r��
�/�

�

−
1

2
τ�
�/�

ϕ�ϕ��/� �
11

42
R�/� −

1

3
R�r��

�/�
+

1

14
r��
�/�

�

+
2

3
τ�ϕ

�ϕ�� �
5

21
R� −

1

3
R�/�r��

�/�
+

2

21
r��
� � 

 (4.3.15) 

Thus the total axial velocity distribution for the region r� ≤ r≤ R(z) 

is v� = v�� + α�v�� (Neglecting terms of higher powers of α�) 

⇒ v� =
1

2
ϕ(R� − r�) −

4

3
τ�
�/�

ϕ�/��R�/� − r�/��+ τ�(R − r)

+ v�+ α� �
1

2
ϕ� �

3

16
R� −

1

4
R�r� +

1

16
r��

−
2

3
τ�
�/�

ϕ�ϕ��/� �
33

196
R�/� �−

1

4
R�/�r� +

4

49
r�/��

−
1

2
τ�
�/�

φ′φ��/� �
11

42
R�/� −

1

3
R�r�/�

+
1

14
r�/�� �+

2

3
τ�φ′φ�� �

5

21
R� −

1

3
R�/�r�/� +

2

21
r����� 

 (4.3.16) 
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The plug flow velocity distribution for the region 0 ≤ r≤ r� is  

v� =
1

2
ϕ�R� − r��

� �−
4

3
τ�
�/�

ϕ�/��R�/� − r��
�/�

�+ τ��R − r���

+ v�+ α
� �
1

2
ϕ� �

3

16
R� −

1

4
R�r��

� +
1

16
r��
� �

−
2

3
τ�
�/�

ϕ�ϕ��/� �
33

196
R�/� − �1

4
R�/�r��

� +
4

49
r��
�/�

�

−
1

2
τ�
�/�

ϕ�ϕ��/� �
11

42
R�/� −

1

3
R�r��

�/�
+

1

14
r��
�/�

���

+ �2

3
τ�ϕ

�ϕ�� �
5

21
R� −

1

3
R�/�r��

�/�
+

2

21
r��
� �� 

 (4.3.17) 

The shear stress τ� is given as 

τ� = rϕ + α� �
�

�
ϕ� �

�

�
R�r−

�

�
r��−

�

�
τ�
�/�

ϕ�ϕ��/� �
�

�
R�/�r−

�

�
r�/��� 

 (4.3.18) 

The wall shear stress τ� is obtained as 

τ� = Rϕ +
�

�
α�ϕ�R� −

�

�
α�τ�

�/�
ϕ�ϕ��/�R�/� (4.3.19) 

The non – dimensional volumetric flow rate for the region                

0 ≤ r≤ R(z) is defined as 

Q(z,t) = 4∫ rv� d
�

�
r 

where Q(z,t) =
��(��,�)̅

π������
�/����

; Q�(z�,t̅)  being the dimensional volumetric 

flow rate. 
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Hence 

Q = 2R�v� +
2

3
τ�R

� +
1

2
R� �ϕ +

1

6
α�ϕ�R� −

15

77
α�τ�

�/�
ϕ�ϕ��/�R�/��

−
8

7
τ�
�/�

R�/� �ϕ�/� +
15

176
α�ϕ�ϕ��/�R�

−
1

10
α�τ�

�/�
ϕ�ϕ��R�/�� 

 (4.3.20) 

4.3. Results and Discussion 

The velocity profile for the axial velocity in the non – plug flow area 

has been obtained by equation (4.3.16). The graphical analysis of 

the results thus obtained are presented in Figs. 4.1(a) and 4.1(b). 

  



60 
 

Figure 4.1(a) describes the variations of the axial velocity versus 

axial distance for the different values of time t, stenosis height H , 

yield stress τ�  and slip velocity v�  taking fixed values e = 0.1 and 

α = 0.1. The profile shows a natural pattern of fluid flow in a circular 

duct. There is an increase in velocity with the pulse while slip 

velocity increases the axial velocity of the fluid. It is found that the 

axial velocity decreases along the axial distance when time, yield 

stress and stenosis height increase.   
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Figure 4.1(b) shows the variations of the axial velocity along radial 

distance for the various values of time t, yield stress τ�  and slip 

velocity v�  with some fixed values e = 0.1 and α = 0.1. It is clear 

that the axial velocity slows down along the radial distance. Also the 

axial velocity increases when the time, yield stress and slip velocity 

increase. A similar graph is obtained showing the increments in the 

axial velocity with the increase in yield stress.   
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The graphical analysis of the axial velocity for the plug flow area 

obtained through equation (4.3.17) has been described through 

Figs. 4.2(a) and 4.2(b). Figure 4.2(a) gives the variations in plug 

flow velocity along axial distance for the various values of time t, 

stenosis height H , yield stress τ� and slip velocity v� with some fixed 

values e = 0.1  and α = 0.1 . It shows that the plug flow velocity 

increases with the increase in axial distance, the stenosis height or 

slip velocity while it increases with the pulse. Also the plug flow 

velocity decreases as the yield stress and time increase. 
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Figure 4.2(b) explains the changes in plug flow velocity versus 

radial distance for the different values of time t, yield stress τ� and 

slip velocity v�  with some fixed values e = 0.1  and α = 0.1 . The 

graph shows that the plug flow velocity increases with increase in 

the radial distance and slip velocity but it decreases as the time and 

yield stress increase.  

 

 

  



64 
 

Figure 4.3(a) shows the changes in the wall shear stress derived 

through equation (4.3.19) along the axial distance for the different 

values of time t and the stenosis height H  with some fixed values 

e = 0.1,τ� = 0.010  and α = 0.1 . It describes that the wall shear 

stress shows wave-like variations along the axial distance and it 

decreases when time and stenosis height increase. 
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Figure 4.3(b) gives the variations of the wall shear stress along the 

radial distance for the different values of time t with some fixed 

values e = 0.1,τ� = 0.010 and α = 0.1. It is observed that the wall 

shear stress increases along the radial distance but it decreases 

when the time increases. 
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Figure 4.4(a) shows the variations of the volumetric flow rate 

obtained in equation (4.3.20) versus the axial distance for the 

different values of time t, stenosis height H , yield stress τ� and slip 

velocity v�  taking fixed values e = 0.1 and α = 0.1. It is observed 

that the volumetric flow rate fluctuates along the axial distance. The 

flow rate decreases with increase in time, yield stress or stenosis 

height but it increases when the slip velocity increases.  
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Figure 4.4(b) shows the variations of the volumetric flow rate  along 

the radial distance for the different values of time t, stenosis height 

H , yield stress τ� and slip velocity v� with some fixed values e = 0.1 

and α = 0.1 . The graph shows that the volumetric flow rate 

increases when the radial distance or slip velocity increases. Also it 

decreases when the time or yield stress  increases.  
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4.5. Conclusion 

In the present model where the Casson fluid is considered as a 

blood, the Womersley parameter α is taken less than one which is 

suitable for the small blood vessels like coronary arteries. The non 

– dimensional yield stress τ� is taken from 0.01 to 0.03 for a normal 

state. The flow amplitude “e” is also taken less than one which is 

reasonable for physiological conditions in normal blood flow. 

Through the graphical analysis it is observed that the volumetric 

flow rate and the axial velocity in both plug flow and non – plug flow 

regions increase with pulse and slip velocity along axial distance 

but they decrease when time or yield stress increases. The axial 

velocity in non – plug flow region, flow flux and wall shear stress 

decrease but the plug flow velocity increases with increase in 

stenosis height. For t= 0  the model reduces to steady state 

situations which is verified by the author’s previous work in chapter 

2. The wall shear stress decreases along axial distance when time 

increases. Also the plug flow velocity, wall shear stress and flow 

flux increase along radial distance and they decrease when yield 

stress or time increases. Non – plug flow velocity decreases with 

increase in radial distance but increases when time, yield stress or 

slip velocity increases. 
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BIOMAGNETIC STEADY FLOW THROUGH AN 

AXISYMMETRIC STENOSED ARTERY 

5.1 Introduction 

Many medical research works have so far proved this fact that 

the narrowing of the blood vessels is causing serious disorders in 

blood circulation which sometimes lead to the heart failures. It has 

been observed that the initial deposits of lipids at the sub-

endothelial space and then extra addition of macrophages become 

fibrous in due course of time which creates the cardiovascular 

problems. So far a number of mathematical models taking different 

blood features have been proposed to study the rheology of blood. 

The magnetic aspect of blood has always been an interesting topic 

of research for the research workers. Since the hemoglobin present 

in the mature blood cells is a form of iron-oxides, therefore the 

blood behaves as a biomagnetic fluid. Some research workers have 

worked on the magnetic property of blood flow under stenotic 

conditions.   

D.F. Young (1968) studied the effect of an axially symmetric time-

dependent stenotic growth into the lumen of a tube of constant 

cross-section over the steady flow by taking the blood as a 

Newtonian fluid. P.K. Suri et al. (1981) presented a mathematical 

simulation of blood flow through branched arteries under transverse 

magnetic field and observed that the applied magnetic field reduces 

the strength of blockage at the apex of bifurcation. J.C. Misra et al. 

(1986) studied the flow through stenosed arteries. J.C. Mishra et al. 

(1989) used the momentum integral method to study flow 

characteristics of blood through stenosed vessel. K. Haldar et al. 

(1994) studied the effect of magnetic field on blood flow through 

indented tube in the presence of erythrocytes. V.P. Srivastava 
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(1995) dealt with the problem of stenotic blood flow taking blood as 

a particle-fluid suspension model and observed that the magnitudes 

of blood flow characteristics significantly increase with increase in 

red cell concentration. H.P. Mazumdar et al. (1996) investigated 

some flow characteristics of a Newtonian fluid under effect of 

magnetic field through a circular tube. 

Y. Haik et al. (2001) studied the apparent additive viscosity of 

human blood because of a high static magnetic field and showed 

that the blood flow under gravity reduces by 30% when it is kept 

under high magnetic field of 10 T. J.C. Misra et al. (2007) gave a 

numerical model to study the effect of magnetic field on blood flow 

through an artery. S. Kenjeres (2008) analyzed blood flow 

numerically in realistic arteries subjected to strong non-uniform 

magnetic fields. L. Parmar et al. (2013) investigated the role of 

magnetic field intensity in Herschel – Bulkley blood flow through 

overlapping stenosed artery. In previous chapter 2 of this thesis, 

author discussed a Casson fluid model to study the steady flow 

through a stenosed blood vessel in which the author explained that 

the axial velocity, volumetric flow rate and pressure gradient 

increase with the increase in slip velocity and decrease with growth 

in yield stress. Author also studied the slip effects on steady flow 

through a stenosed blood artery and found that axial velocity, 

volumetric flow rate and pressure gradient decrease along the 

radial distance as the slip length increases but the wall shear stress 

increases with increase in slip length. 

5.2 Mathematical Formulation 

Let the blood flow be steady, laminar and incompressible through 

an axially symmetric stenosed cylindrical artery in z – direction.  

The geometrical diagram of the stenosed artery is given in figure 

2.0. 
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Let R�� be the radius of the normal tube and R�(z�) is the radius of the 

constricted area given by Young (1968): 

R�(z�)= �
R�� −

��

�
�1 + cos

�π

�̅�
�z�� + l̅� − z���    ;z�� ≤ z� ≤ z�� + l̅�

R��                                                 ;otherwise

� (5.2.1) 

Where l̅� is the length of the stenosis in the artery of the length l̅,  z�� 

is the location of the stenosis of maximum height h�. Also, let r̅ and z� 

be radial and axial coordinates.  

Here the blood is considered to behave as a Casson fluid under the 

effect of an externally applied uniform transverse magnetic field 

which generates a motion due to which the fluid particles are 

attracted towards the magnetic field.  

Under the above considerations, the equations of motion in the 

dimensional form are:   

−
���

���
+

�

��

�

���
(r̅τ�̅)+ ∈� M

���

���
= 0     (5.2.2) 

���

���
= 0         (5.2.3) 

where p� denotes pressure at any point, ∈� magnetic permeability, M  

magnetization and B� represents the magnetic field intensity. Also τ�̅ 

denotes the shear stress of the fluid. Casson fluid has the following 

simplified constitutive equations: 

F(τ�̅)= −
����

���
=

�

���
�τ�̅

�/�
− τ�̅

�/�
�
�
   for τ�̅ ≥ τ�̅   (5.2.4) 

����

���
= 0                                                   for τ�̅ ≤ τ�̅   (5.2.5) 

where v�� is the axial velocity of the blood, τ�̅ represents the yield 

stress and k�� is the fluid viscosity.  
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The equations (5.2.2) to (5.2.5) are subject to the following 

boundary conditions: 

�v�� = v��                                                  at r̅= R�(z�)

τ�̅ = Finite value                          at r̅= 0
�   (5.2.6) 

where v�� denotes the slip velocity along z – axis.  

Let us introduce the following non – dimensional variables as  

R(z)=
��(��)

���
,z =

���� �̅����

�̅�
,r=

��

���
,τ� =

τ�̅

������/�
,τ� =

τ�̅

������/�
,   

v� =
���

������
�/����

,   v� =
���

������
�/����

,H =
��

���
,B =

��

���
,
��

��
=

���/���

���
   (5.2.7) 

Here p��  is the steady – state amplitude and B��  represents the 

external transverse uniform constant magnetic field.  

Under the above non – dimensional conditions, the radius of the 

stenotic area of the artery becomes 

R(z)= �
1 − H cos� πz                      ;0 ≤ � ≤ 1
1                                              ;otherwise

�   (5.2.8) 

The dimensionless forms of equations (5.2.2) to (5.2.5) are  

−2
��

��
+

�

�

�

��
(rτ�)− C

��

��
= 0      (5.2.9) 

��

��
= 0 (5.2.10) 

−
���

��
= (τ�

�/�
− τ�

�/�
)�         for τ� ≥ τ� (5.2.11) 

���

��
= 0         for τ� ≤ τ� (5.2.12) 

where C =
�∈�� ���

����̅�
 (5.2.13)  

The non – dimensional boundary conditions are 

�v� = v�                                                  at r= R(z)

τ� = Finite value                          at r= 0
� (5.2.14) 
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Using condition (5.2.14) in equation (5.2.9), the shear stress τ� and 

wall shear stress τ� can be written as  

τ� =
�

�
�2

��

��
+ C

��

��
� (5.2.15) 

τ� =
�

�
�2

��

��
+ C

��

��
� (5.2.16) 

From equations (5.2.15) and (5.2.16), 

τ�

τ�
=

�

�
 (5.2.17) 

where R = R(z) 

5.3 Method of Solution 

Thus velocity in the region r� ≤ r≤ R(z) is obtained by integrating 

equation (5.2.11) using conditions (5.2.14) and (5.2.15) where 

r� =
���

���
 is the non – dimensional radius of the plug flow region, 

given as  

v� = v� +
�

��
��

��
��

��

��
�
��τ�

�/�
− τ�

�/�
�
�
+

�

�
τ�
�/�

�τ�
�/�

− τ�
�/�

�
�
− �τ�

�/�
−

τ�
�/��

�
�−

�

�
τ�
�/�

�τ�
�/�

− τ�
�/�

�
�
��   (5.3.1) 

Within plug flow region i.e. 0 ≤ r≤ r� , τ� = τ�  at r= r� , therefore 

the plug flow velocity is  

v� = v� +
�

��
��

��
��

��

��
�
��τ�

�/�
− τ�

�/�
�
�
+

�

�
τ�
�/�

�τ�
�/�

− τ�
�/�

�
�
�  (5.3.2) 

Now the volumetric flow rate in the dimensionless form for the 

region 0 ≤ r≤ R(z) can be obtained as  

 Q = 4∫ rv(r)dr
�

�
 

    = 4∫ rv�dr+
��
�

4∫ rv�dr
�

��
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Hence 

Q = 2R�v� +
��

��
��

��
��

��

��
�
�2�τ�

�/�
− τ�

�/�
�
�
+

�

�
τ�
�/�

�τ�
�/�

− τ�
�/�

�
�
� −

��

��
��

��
��

��

��
�τ�
�
�τ�
� −

�

�
τ�
�τ�

� +
�

�
τ�
�τ� −

��

��
τ�
�/�

τ�
�/�

+
�

��
τ�
��   (5.3.3) 

If τ� ≪ τ� i.e.  
τ�

τ�
≪ 1, then equation (5.3.3) reduces to the form 

Q = 2R�v� +
��τ�

��
��

��
��

��

��
�
�τ� −

��

�
τ�
�/�

τ�
�/�

+
�

�
τ��   (5.3.4) 

which also gives us the wall shear stress for the stenosed artery as  

τ� = �
�

�
τ�
�/�

+ �
����������

��τ�
�2

��

��
+ C

��

��
� −

�

���
τ��

�/�

�

�

  (5.3.5) 

If there is no stenosis i.e. R(z)= R� then the wall shear stress for 

the non – constricted artery is given as  

τ� = �
�

�
τ�
�/�

+ �
�������

����

��
�τ�

�2
��

��
+ C

��

��
� −

�

���
τ��

�/�

�

�

  (5.3.6) 

5.4 Results and Discussion 

The velocity profile for the axial velocity in the non – plug flow 

region has been obtained in equation (5.3.1) and the graphical 

discussions of the results are given in figures 5.1(a) and 5.1(b). 
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Figure 5.1(a) gives the variations of the axial velocity versus axial 

distance for the different values of the stenosis height H , pressure 

gradient 
��

��
, magnetic field gradient 

��

��
, yield stress τ�  and slip 

velocity v� with some fixed value τ� = 0.030. It is observed that the 

axial velocity first increases achieving a maximum value at the peak 

of the stenosis and then starts decreasing along the axial distance. 

Also the axial velocity increases with an increase in slip velocity, 

pressure gradient and magnetic field gradient but it decreases when 

the yield stress increases.  
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Figure 5.1(b) shows the variations of the axial velocity along radial 

distance for the various values of the magnetic field gradient 
��

��
, 

yield stress τ� and slip velocity v� with some fixed value τ� = 0.030. 

When the magnetic field increases, the axial velocity starts 

increasing slowly but it increases fast as the radial distance 

increases. As the slip velocity increases, the axial velocity increases 

a little fast but grows slowly when the radial distance increases. The 

axial velocity decreases slowly when the yield stress increases 

along the radial distance.  
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The graphical description of the axial velocity for the plug flow area 

obtained through equation (5.3.2) has been given in figures 5.2(a) 

and 5.2(b). Figure 5.2(a) describes the changes in plug flow velocity 

along axial distance for the different values of the stenosis height H , 

pressure gradient 
��

��
, magnetic field gradient 

��

��
, yield stress τ� and 

slip velocity v� with a fixed value τ� = 0.030. The graph shows that 

the plug flow velocity first increases to get a maximum value at the 

peak of the stenosis along the axial distance and after a certain 

point it starts decreasing. The plug flow velocity increases greatly 

for smaller increments in magnetic field gradient along the axial 

distance. As the slip velocity increases, the plug flow velocity 

increases with pulse along the axial distance. When the pressure 

gradient increases, the plug flow velocity increases along the z – 

axis. The plug flow velocity deceases as the yield stress increases. 
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Figure 5.2(b) shows the variations in plug flow velocity versus radial 

distance for the different values of the pressure gradient 
��

��
, 

magnetic field gradient 
��

��
, yield stress τ�  and slip velocity v�  with 

some fixed value τ� = 0.030. It clarifies that the plug flow velocity 

increases along the radial distance. As the magnetic field gradient 

increases, the plug flow velocity increases very slowly for smaller 

radial distance but it increases fast as the radial distance increases. 

When the slip velocity increases, the pug flow velocity increases 

fast for lower radial distance but it becomes slower along the radial 

distance. Also the plug flow velocity decreases as the yield stress 

increases. 
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The variations of the volumetric flow rate obtained through equation 

(5.3.4) are shown along the axial distance for the various values of 

the stenosis height H , pressure gradient 
��

��
, magnetic field gradient  

��

��
 and slip velocity v� with a fixed value τ� = 0.030  in figure 5.3(a). 

It shows that the flow flux first increases and after getting a 

maximum value at the peak of the stenosis, it decreases. When the 

pressure gradient increases, the volumetric flow rate increases 

slowly with pulse along the axial distance. As slip velocity 

increases, the flow flux increases fast. The flow flux increases 

greatly for smaller increments in the magnetic field gradient along 

the axial distance. The volumetric flow rate decreases slowly with 

increment in the yield stress along the axial distance. 
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Figure 5.3(b) shows the changes in the volumetric flow rate along 

the radial distance for the different values of the magnetic field 

gradient 
��

��
 and slip velocity v�  with a fixed value τ� = 0.030. The 

volumetric flow rate keeps on growing along the radial distance. 

The flow flux increases very slowly for smaller increments in the 

magnetic field gradient along the radial distance. When the slip 

velocity increases, the volumetric flow rate slowly increases for 

lower radial distance but it increases fast as the radial distance 

increases. 
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Figure 5.4(a) shows the variations of the wall shear stress derived 

through equation (5.3.5) along the axial distance for the different 

values of the stenosis height H , pressure gradient 
��

��
, magnetic field 

gradient 
��

��
 and slip velocity v�  with a fixed value τ� = 0.030. The 

wall shear stress keeps on changing from high value to low value at 

the peak of the stenosis and then again to high value along the 

axial distance. When the pressure gradient increases, the wall 

shear stress shows slow increments along the axial distance. It 

almost coincides with the previous values of the wall shear stress. 

With increase in the magnetic field gradient, the wall shear stress 

increases. As the slip velocity increases, the wall shear stress 

increases greatly along the axial distance. 
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Figure 5.4(b) gives the changes in the wall shear stress versus the 

radial distance for the different values of the magnetic field gradient 

��

��
 and slip velocity v� with a fixed value τ� = 0.030. It is clear that 

the wall shear stress increases fast along the radial distance when 

the magnetic field gradient increases. Also the wall shear stress 

decreases very slowly along the radial distance as the slip velocity 

increases.  
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The graphical representations of variations of some flow 

characteristics were not very clear due to the very small changes in 

the corresponding values. Therefore these variations are provided 

in tabulated forms. 

The variations of axial and plug flow velocities versus pressure 

gradient along the radial distance are given in Table 5.1. It is clear 

from the table that the fluid velocities in both plug flow and non – 

plug flow regions are increasing with increase in the pressure 

gradient along the radial distance. The fluid velocity is also 

increasing when it enters from non – plug flow region to the plug 

flow region. 

Table 5.1: Variation of Fluid Velocity in Plug Flow and Non-plug 

Flow Regions versus Pressure Gradient Along Radial Distance. 

��

��
 

�(�)= �. � �(�)= �. � �(�)= �. � 

�� �� �� �� �� �� 

0.5 0.49999886 0.499999670 6.482 6.482 24.812 24.812 

1.0 0.49999887 0.499999673 6.543 6.543 25.057 25.057 

1.5 0.49999888 0.499999676 6.604 6.604 25.303 25.303 
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Table 5.2(a) shows the variations of the volumetric flow rate versus 

pressure gradient along the radial distance. When the pressure 

gradient increases, the flow flux increases along the radial distance. 

Table 5.2(a): Variations of Volumetric Flow Rate versus 

Pressure Gradient Along Radial Distance. 

��

��
 

Q 

� = �. � � = �. � � = �. � 

0.5 0.0 1.757173 25.444514 

1.0 0.0 1.772444 25.690503 

1.5 0.0 1.787716 25.936512 
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Table 5.2(b) gives the changes in the volumetric flow rate versus 

pressure gradient along the radial distance. It is observed that the 

flow flux increases along the radial distance as the yield stress 

increases. 

Table 5.2(b): Variations of Volumetric Flow Rate versus Yield 

Stress Along Radial Distance. 

 

 

 

 

 

 

  

�� Q 

� = �. � � = �. � � = �. � 

0.010 0.0 1.757173 25.444514 

0.015 0.0 1.728272 25.114776 

0.020 0.0 1.706290 24.863310 
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The variations of the wall shear stress along axial and radial 

distances for different values of the yield stress are given in Table 

5.3(a). The wall shear stress first decreases and after a minimum 

value it again starts increasing along axial distance. Also it 

increases with increase in the yield stress. The wall stress also 

increases along the radial distance when the yield stress increases. 

Table 5.3(a): Variations of Wall Shear Stress versus Yield 

Stress Along Axial and Radial Distance. 

�� �� 

z r 

 0.1 0.4 1.0 0.1 

(× 106) 

0.4 

(× 107) 

1.0 

(× 107)  

0.010 79.301 7.1852 89.8996 3.3037 1.321403 3.30343 

0.015 79.759 7.3235 90.3872 3.3038 1.321421 3.30346 

0.020 80.146 7.4410 90.7992 3.3038 1.321437 3.30348 
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Table 5.3(b) exhibits the changes in the wall shear stress versus 

pressure gradient along the radial distance. It is obvious that the 

wall shear stress increases along the radial distance when the 

pressure gradient increases. 

Table 5.3(b): Variations of Wall Shear Stress versus Pressure 

Gradient Along Axial and Radial Distance. 

 

 

  

 

 

 

 

  

��

��
 

�� 

� = �. � 

(× 106) 

� = �. � 

(× 107) 

� = �. � 

(× 107) 

0.5 3.303715 1.321403 3.303431 

1.0 3.307015 1.322723 3.306731 

1.5 3.310315 1.324043 3.310031 
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5.5 Conclusion 

The present model deals with the study of the magnetic feature of 

blood as a Casson fluid. The values of the different parameters 

used in the analysis have been taken from the chapter 2 of this 

thesis. The analysis of the study shows that the volumetric flow rate 

and the axial velocity increase along axial distance with pulse when 

the axial distance, pressure gradient, magnetic field gradient, yield 

stress and slip velocity increase and the axial velocity in plug flow 

region along radial distance decreases when yield stress increases 

but it rises with increase in magnetic field gradient and slip velocity. 

The axial velocity in both plug and non – plug flow regions and the 

flow flux decrease along the axial distance with increase in stenosis 

height. The axial and the plug flow velocity increase with increase in 

the pressure gradient along the radial distance. The flow flux in 

radial direction increases when the magnetic field gradient, 

pressure gradient and the slip velocity increase. The wall shear 

stress shows fluctuations along the axial distance from higher 

values to the minimum values and then again to higher values. It 

increases as the pressure gradient, magnetic field gradient, slip 

velocity and stenosis height increase in z – direction. Also the wall 

shear stress increases when magnetic field gradient increases but it 

decreases as the slip velocity increases. The wall shear stress 

increases along radial distance with increase in pressure gradient 

and the yield stress. 
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STEADY SLIP BLOOD FLOW THROUGH A 

STENOSED POROUS ARTERY 

6.1 Introduction 

It is believed that the abnormal and the unnatural deposits of the 

fatty and the fibrous tissues in arterial lumen obstruct the blood flow 

which gives rise to various cardiovascular and cerebral diseases. 

According to medical reports, the endothelial walls have the ultra – 

microscopic pores for filtration. Cholesterol increases the wall 

permeability when the arterial walls are damaged, inflamed or 

dilated. When the fatty and fibrous tissues are clotted in the wall 

lumen, its distribution acts like a porous medium. Many researchers 

have attempted to understand the different flow features by 

considering blood flow through a porous cylindrical tube under 

stenosis.  

G.S. Beavers et al. (1967) studied the boundary conditions at a 

naturally permeable wall and suggested that the effect of boundary 

should be replaced with a slip velocity proportional to the exterior 

velocity gradient. D.F. Young (1968) investigated the effect of time 

dependent stenosis on blood flow through a tube taking blood as a 

Newtonian fluid. R.K. Dash et al. (1996) investigated the Casson 

fluid flow in a pipe filled with a homogeneous porous medium by 

applying the Brinkman model for the Darcy resistance shown by the 

porous medium. B.K. Mishra et al. (2007) studied the effect of 

porous parameter and stenosis height on the wall shear stress of 

human blood flow. S. Mishra et al. (2011) discussed the effects of 

the wall permeability through a stenosed artery. D. Jogie et al. 

(2012) studied the laminar flows of two immiscible fluids through 

permeable channel. A. Kumar et al. (2012) investigated the porous 

effects on two phase blood under magnetic field. S. Pramanik 
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(2014) used Casson fluid model to study the boundary layer fluid 

flow with heat transfer past an exponentially porous stretching 

surface under the thermal radiation and observed that the skin-

friction increases when the suction parameter increases. Author in 

previous chapter 2, discussed a Casson fluid model for steady flow 

through a stenosed blood vessel in which author explained that the 

axial velocity, volumetric flow rate and pressure gradient increase 

with the increase in slip velocity and decrease with growth in yield 

stress. Author studied the slip effects on steady flow through a 

stenosed blood artery and found that axial velocity, volumetric flow 

rate and pressure gradient decrease along the radial distance as 

the slip length increases but the wall shear stress increases with 

increase in slip length. Author also analyzed the magnetic effects on 

steady blood flow through an artery under axisymmetric stenosis 

and concluded that the axial velocity and flow flux increase as the 

magnetic field gradient and slip velocity increase but they decrease 

with the stenosis height along axial distance. 

6.2 Mathematical Formulation 

Steady, laminar and incompressible flow of blood through an axially 

symmetric stenosed cylindrical artery in z – direction is considered. 

The geometry of the stenosed artery is given in figure 2.0. 

Let R�� be the radius of the normal tube and R�(z�) be the radius of 

the stenosed portion given by Young (1968) as:  

R�(z�)= �
R�� −

��

�
�1 + cos

�π

�̅�
�z�� + l�̅ − z���    ; z�� ≤ z� ≤ z�� + l�̅

R��                                                ; otherwise

� (6.2.1) 

where l�̅ is the length of the stenosis in the artery of the length l,̅  z�� 

is the position of the stenosis of maximum height h�. Let r̅ and z� be 

radial and axial coordinates respectively.  
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The blood is considered to behave like Casson fluid passing 

through the artery having permeable walls of homogeneous and 

isotropic materials. Flow is considered to be governed by the 

Darcy’s Law.  

With above considerations, the equations of motion in the 

dimensional form are:   

−
���

���
+

�

��

�

���
(r̅τ̅�) = 0       (6.2.2) 

���

���
= 0         (6.2.3) 

where p� is the pressure at any point and τ̅� be the shear stress of 

the Casson fluid with following simplified constitutive equations: 

F(τ̅�) = −
����

���
=

�

���
�τ̅�

�/�
− τ̅�

�/�
�

�
   for τ̅� ≥ τ̅�   (6.2.4) 

����

���
= 0                                                   for τ̅� ≤ τ̅�   (6.2.5) 

where v�� is the axial velocity of the blood, τ̅� be the yield stress and 

k�� is the fluid viscosity.  

The equations (6.2.2) to (6.2.5) are subject to the following 

boundary conditions (Beavers and Joseph, 1967): 

�

τ̅� = Finite Value                          at r̅ = 0

v�� = v��                                                  at r̅ = R�(z�)
����

���
=

α

∈��/�
(v�� − v��)                             at r̅ = R�(z�)

�   (6.2.6) 

where by Darcy’s law, 

v�� = −
∈�

���

���

���
        (6.2.7) 

Here v��  represents the slip velocity in z – direction, v�� is the filter 

velocity of fluid through the porous region known as the Darcy 

value, α  be a non – dimensional quantity known as the slip 
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parameter which depends upon the material parameters 

characterizing the structure of porous material within the boundary 

region and ∈� is the permeability of the wall material.      

Introducing the following non – dimensional variables as  

R(z) =
��(��)

���
,z =

���� �̅�� ��

��̅
,r =

��

���
,τ� =

τ̅�

������/�
,τ� =

τ̅�

������/�
,    

 v� =
���

������
�/����

,v� =
���

������
�/����

,v� =
���

������
�/����

,H =
��

���
, ∈=

∈�

���
� ,

��

��
=

���/���

���
  

 (6.2.8)  

Here p�� denotes the steady – state amplitude.  

With above non – dimensional scheme, the radius of the stenotic 

area of the artery becomes 

R(z)= �
1 − H cos� πz                     ; 0 ≤ z ≤ 1
 1                                             ; otherwise

� (6.2.9) 

Non – dimensional forms of equations (6.2.2) to (6.2.5) are  

− 2
��

��
+

�

�

�

��
(rτ�) = 0 (6.2.10) 

��

��
= 0 (6.2.11) 

−
���

��
= (τ�

�/�
− τ�

�/�
)�         for τ� ≥ τ� (6.2.12) 

���

��
= 0         for τ� ≤ τ� (6.2.13) 

The dimensionless slip boundary conditions are 

�

τ� = Finite Value                          at r = 0

v� = v�                                                  at r = R(z)
���

��
=

α

∈�/�
(v� − v�)                             at r = R(z)

� (6.2.14) 

where v� = − 2 ∈
��

��
 (6.2.15) 

Applying condition (6.2.14) in equation (6.2.10), the shear stress τ� 

and wall shear stress τ� are obtained as:  
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τ� = − r
��

��
 (6.2.16) 

τ� = − R
��

��
 (6.2.17) 

From equations (6.2.16) and (6.2.17), 

τ�

τ�
=

�

�
 (6.2.18) 

where R = R(z) 

6.3 Method of Solution 

Integrating equation (6.2.12) under conditions (6.2.14) and using 

the result (6.2.15), the velocity in the region r� ≤ r ≤ R(z) where 

r� =
���

���
 being the non – dimensional radius of the plug flow region, 

is given as:  

v� =
�

�τ�
�(τ�

� − τ�
�)−

�

�
τ�

�/�
�τ�

�/�
− τ�

�/�
� + 2τ�(τ� − τ�)� −

∈�/�

α
�τ�

�/�
−

τ�
�/��

�
+

�∈τ�

�
  

  (6.3.1)  

Within plug flow region i.e. 0 ≤ r ≤ r� , τ� = τ�  at r = r� , therefore 

the plug flow velocity is   

v� =
�

�τ�
�τ�

� −
�

�
τ�

� −
�

�
τ�

�/�
τ�

�/�
+ 2τ�τ�� −

∈�/�

α
�τ�

�/�
− τ�

�/�
�

�
+

�∈τ�

�
 

         (6.3.2) 

Now the volumetric flow rate in the dimensionless form for the 

region 0 ≤ r ≤ R(z) is obtained as:  

 Q = 4 ∫ rv(r)dr
�

�
 ` 

    = 4 ∫ rv�dr +
��

�
4 ∫ rv�dr

�

��
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Hence 

Q =
��

�τ�
� �τ�

� −
��

�
τ�

�/�
τ�

�/�
+

�

�
τ�τ�

� −
�

��
τ�

�� −
�∈�/�

α
R��τ�

�/�
− τ�

�/�
�

�
  

+4 ∈ Rτ� (6.3.3)  

If τ� ≪ τ� i.e.  
τ�

τ�
≪ 1, then equation (6.3.3) becomes    

Q =
��

�
�τ� −

��

�
τ�

�/�
τ�

�/�
+

�

�
τ�� −

�∈�/�

α
R��τ�

�/�
− τ�

�/�
�

�
+ 4 ∈ Rτ�  

 (6.3.4)  

which gives us the wall shear stress for the stenosed artery as   

τ� = �
��

���
τ�

�/�
+ �

��α�

��
+

(��
�� �����)

���
� τ��

�/�

�

�

 (6.3.5) 

where 

�
ϕ� = 24R��2αR − 7 ∈�/��

ϕ� = 28R��αR − 3 ∈�/��   
                

ϕ� = 21R�αR� − 4R ∈�/�+ 8α ∈�   

�  (6.3.6) 

The pressure gradient is obtained by using equation (6.3.5) in 

equation (6.2.17) as:  

��

��
= −

�

�
�
φ�

�φ�

τ�
�/�

+ �
��α�

φ�

+
(φ�

�� �φ
�
φ�)

�φ�
� τ��

�/�

�

�

 (6.3.7) 

6.4 Results and Discussion 

The velocity profile for the axial velocity in the non – plug flow 

region has been derived in equation (6.3.1) and the graphical 

discussions of the results are mentioned in figures 6.1(a) and 

6.1(b). 
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Figure 6.1(a) shows the changes in the axial velocity along axial 

distance for the different values of the permeability ∈ , slip 

parameter α, stenosis height H  and yield stress τ� with some fixed 

values τ� = 0.070 and τ� = 0.030. The axial velocity increases when 

the wall permeability increases but it decreases when slip 

parameter, stenosis height and the yield stress increase.  
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Figure 6.1(b) represents the variations of the axial velocity versus 

radial distance for the various values of the permeability ∈ , slip 

parameter α and yield stress τ� with some fixed values τ� = 0.070 

and τ� = 0.030. The graph of axial velocity shows a fall up to the 

stenosis and then rise along the radius of the artery. The axial 

velocity increases with increase in wall permeability whereas it 

decreases as slip parameter and yield stress increase.  
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The graphical details of the axial velocity for the plug flow area 

obtained through equation (6.3.2) has been shown in figures 6.2(a) 

and 6.2(b).  

Figure 6.2(a) gives the variations in plug flow velocity along the 

arterial axis for different values of the permeability ∈ , stenosis 

height H  and yield stress τ� with some fixed values τ� = 0.070 and 

τ� = 0.030. The plug flow velocity increases with increase in the wall 

permeability but it decreases when the yield stress, slip parameter 

and the stenosis height increase.  
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Figure 6.2(b) shows the variations in plug flow velocity along radial 

distance for the various values of the permeability ∈ and yield stress 

τ�  with some fixed values τ� = 0.070 and τ� = 0.030. The general 

behaviour of plug flow velocity is to decrease initially and then to 

increase with increments in radial distance. The plug flow velocity 

increases with the permeability but it decreases with the yield stress 

and slip parameter.   
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The variations of the volumetric flow rate obtained through equation 

(6.3.4) are plotted against the axial distance for the various values 

of the permeability ∈, slip parameter α, stenosis height H  and yield 

stress τ� with some fixed values τ� = 0.070 and τ� = 0.030 in figure 

6.3(a). The figure shows that flow flux increases when the wall 

permeability increases but it decreases as the slip parameter, 

stenosis height and the yield stress increase.   
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Figure 6.3(b) shows the variation in the volumetric flow rate versus 

the radial distance for the different values of the permeability ∈, slip 

parameter α and yield stress τ� with some fixed values τ� = 0.070 

and τ� = 0.030 . The flow flux increases with increase in radial 

distance and the permeability and decreases with the increase in 

wall slip parameter and the yield stress.   
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Figure 6.4(a) represents the variations of the wall shear stress 

obtained through equation (6.3.5) along axial distance for different 

values of the permeability ∈, slip parameter α, stenosis height H  

and yield stress τ�  with some fixed values τ� = 0.070, τ� = 0.030 

and Q = 1. The wall shear stress increases with increase in the 

stenosis height, yield stress and the wall slip but it decreases as the 

wall permeability increases.    
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Figure 6.4(b) shows the variation of wall shear stress along the 

radial distance for the different values of the permeability ∈ and slip 

parameter α  with some fixed values τ� = 0.070 , τ� = 0.030  and 

Q = 1. The wall shear stress decreases as the wall permeability 

increases while it increases when the wall slip increases.  
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Figure 6.5(a) shows the variations of the pressure gradient derived 

through equation (6.3.7) along the axial distance for the different 

values of the permeability ∈, slip parameter α, stenosis height H  and 

yield stress τ�  with some fixed values τ� = 0.070 , τ� = 0.030  and 

Q = 1 . The figure shows that pressure gradient increases with 

increase in the wall permeability while it decreases as the slip 

parameter, yield stress and the stenosis height increase.  
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Figure 6.5(b) represents variations of the pressure gradient versus 

the radial distance for the different values of the permeability ∈, slip 

parameter α, stenosis height H  and yield stress τ� with some fixed 

values τ� = 0.070 , τ� = 0.030  and Q = 1 . The pressure gradient 

exhibits increase along the arterial axis. It decreases with the 

increase in the permeability and the wall slip.  
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Table 6.1 shows the variations of the wall shear stress and the 

pressure gradient versus yield stress along the radial distance. It 

exhibits that the wall shear stress decreases with increase in radial 

distance but it increases as the yield stress increases. The pressure 

gradient increases with the increase in radial distance and 

decreases when the yield stress increases.   

Table 6.1: Wall Shear Stress and Pressure Gradient versus 

Radial Distance and Yield Stress. 

�� � = �. � � = �. � � = �. � 

�� ��

��
 

�� ��

��
 

�� ��

��
 

0.010 41.894 - 418.948 1.9830 - 3.9458 0.5307 - 0.9770 

0.015 42.138 - 421.387 2.0453 - 4.0600 0.5642  - 1.0223  

0.020 42.344 - 423.448 2.0986 - 4.1558 0.5932 - 1.0614 
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6.5 Conclusion 

The study shows that the axial velocity in both plug and non – plug 

flow regions, flow flux and the pressure gradient increase along 

axial and radial distances when the arterial wall becomes more 

porous. The wall shear stress decreases with increase in the wall 

porosity but it increases as the slip parameter along axial and radial 

distances increases. The skin friction decreases when the stenosis 

height increases along axial distance. The axial velocity, flow flux 

and the pressure gradient decrease along the axial distance when 

the slip parameter and the stenosis height increase. The axial 

velocity, plug flow velocity, flow flux decrease along axial distance 

when yield stress increases which verifies the author’s previous 

work in chapter 2 of this thesis. 
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